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Shear-thinning fluids flow in fixed and fluidised beds
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Abstract

In the paper the results of experimental studies directed on the effect of liquids’ properties (aqueous solutions of poly-
mers and surfactants) on resistance of the flow through porous and fluidised beds, are presented. It was shown that the
determination of the values of minimal fluidisation velocity on the basis of an analysis of pressure drop related to the cur-
rent two-phase system height gives the more accurate values than the method based on the initial bed height. Indepen-
dently of the Newtonian or shear-thinning properties of the liquid flowing through motionless or fluidised bed, the
relation of the friction factor on well-defined Reynolds number (related to real rheological parameters of a liquid studied)
is analogous. It has been shown that the diagram proposed by Koziol et al. can be stated as the generalized one, not only
for the determination of the solid particles motion in Newtonian fluids, but for the shear-thinning liquids too. In the last
case it should be taken into account that the critical value of porosity cannot be taken equal to 0.4, but should be appro-
priate to the real porosity in the critical conditions for a given system solid particle–liquid. The generalization of both, the
map of Bi and Grace related to the characteristic fluidisation ranges and the diagram of the classification of particles flui-
dised proposed by Goossens for gas-fluidisation, on any systems of solid particles–power law fluids, has been proposed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many processes are enhanced by the successful application of fluidisation, which compared to other pro-
cesses, offers improved fluid–solids contact, near isothermal conditions, and improved heat and mass transfer.
Fluidisation starts at a point when the bed pressure drop exactly balances the net downward forces on the bed
packing, thus in that point the system of solid particle–Newtonian fluid obeys the force balance relations:
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where DP is the pressure drop, H is bed height, g is gravity acceleration, qp is particle density, qL is fluid den-
sity, ecrit is current porosity corresponding to so-called minimum fluidisation velocity, w0;crit is superficial veloc-
ity of a fluid defined as the volumetric flow divided by the cross sectional area corresponding to minimum
fluidisation velocity, gL is Newtonian fluid viscosity, dp is particle diameter. Therefore the result is the relation
DP
H
¼ 150 � w0;crit � g0 � ð1� ecritÞ2

e3
crit � d

2
p

þ
1:75 � ð1� eÞ � w2

0;crit � q0

e3
crit � dp

: ð3Þ
The two terms on the right hand side of Eq. (3) can be recognized as viscous and inertial contributions. In
most industrial applications involving fluidised beds, the solid particles diameters and also their total volume
Vs in two-phase system are small. In these cases, the second term in Eq. (2) is negligible compared to the first
one, so that
150 � w0;crit � gL

g � ðqp � qLÞ � d2
p

¼ e3
crit

1� ecrit

: ð4Þ
For a given bed the above equation can be used for both, the unexpanded (of porosity e0 and for superficial
velocity w0) and the expanded, states. As total volume of two-phase system increases e may increase and hold
the pressure drop DP constant (H will also increase but its effect is much less than the effect of change in poros-
ity e). At velocities w0 less than the minimum fluidisation velocity w0;crit the bed behaves as a packed bed. How-
ever, as the velocity is increased above w0;crit, not only the bed does expand (H increases), but also the particles
move apart, and e also increases to keep the DP constant. The equations derived for minimum fluidisation
velocity can be applied to liquids as well as gases, but beyond the minimum fluidisation velocity w0;crit, the
appearance of beds with liquids or gases is quite different.

The fundamental tasks of fluidised-bed dynamics are to determine the condition of transition from a fixed-
bed into a fluidised-bed state and the prediction of bed expansion in relation to rheological properties of liquid
media. In some publications (Richardson, 1971; Dullien, 1975; Rietema, 1982; Joshi, 1983; Kunii and Leven-
spiel, 1990; di Felice, 1995; Jamialahmadi and Muller-Steinhagen, 2000) the previous findings have been
reviewed where Newtonian liquid fluidisation is a specific case, such as the problem of flow in porous media,
dispersed two-phase systems as well as particulate fluidisation. In papers of Kemblowski et al. (1989) and
Chhabra et al. (2001) most experimental and theoretical studies concerned with pressure drop determination
for non-Newtonian fluid flow through porous media have been reviewed. In a paper by Chhabra and Srinivas
(1991) an attempt has been made to reconcile and critically analyse the voluminous literature available on the
flow of rheologically complex fluids through unconsolidated fixed bed and fluidised bed. Chhabra (1993) has
demonstrated that non-Newtonian liquid fluidised beds in literature have received limited attention. The rep-
resentative summary on the variety of packings and non-Newtonian fluids used as well as the representative
studies on fluidisation of particles with non-Newtonian fluids was presented in paper of Chhabra et al. (2001).
The bulk of the information available in the literature relates to the beds of spherical particles fluidised by
power-law inelastic polymer solutions. Little is known about the role of fluid viscoelasticity – due to mobility
of particles in a fluidised bed, the viscoelasticity manifests itself in different ways in fixed and fluidised beds.
While in the creeping flow through fixed bed of particles the viscoelasticity gives rise to excess pressure drop, in
the flow through fluidised beds it can lead to segregation of particles. The last review paper of Chhabra et al.
(2001) suggests that the knowledge is very scant about the detailed kinematics of flow including flow patterns,
residence time distribution, micro-level phenomena such as polymer adsorption, retention and wall effects.
The current literature has not failed to give special attention to the solutions of surface-active agents flowing
through fixed and fluidised bed.

The present study is concerned with the experimental comparison of the liquid phase properties effect on
both, friction factors for the flow of the rheostable fluids through porous and fluidised bed, and on minimum
fluidisation velocities for Newtonian and non-Newtonian (both surfactants and polymers) aqueous solutions.

2. Experimental

Fig. 1 illustrates the schematic diagram of the experimental set-up. The main element of the test installation
was an apparatus constructed from organic glass pipe with an inside diameter of T = 0.090 m and a height of



Table 1
Characteristics of the agalite particles studied

Fraction
no.

Range of dp

(mm)
Averaged solid
diameter dp (m)

Primary porosity of
a bed e0 (m3/m3)

Density qs

(kg/m3)
Reduced diameter in a
water dp;r ¼ dp

de;w

1 1.5–2 0.0018 0.421 2110 38.49
2 2–2.5 0.0023 0.418 2236 49.18
3 2.5–3 0.0028 0.415 2364 59.88
4 3–4 0.0036 0.416 2282 76.99
5 4–5 0.0044 0.422 2258 94.10

Fig. 1. Experimental set-up: 1 – tank; 2 – pump UPE 25-60B; 3 – heat exchanger; 4, 9 – control valves; 5, 6 – rotameters; 7 – fluidised
column; 8 – numerical differential manometer Manoport 3922; 10, 11 – pressure probe.
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2.0 m equipped in the scale for determination of fluidised bed height. The fluidising column was equipped with
probes connected to a piezoelectric pressure transducer. The numerical differential manometer used permitted
to obtain the experimental data with accuracy ±0.2% of full scale. The idea of the measurements is analogous
to this applied by di Felice (2002). In literature the various techniques for determination of minimum fluidi-
sation velocity (e.g., light transmission technique: Didwania and Homsy, 1981; conductivity method: Briens
et al., 1997; radioactive method: Chen et al., 2001) have been used.

The studied beds were composed of agalite balls of characteristics shown in Table 1. The liquids tested were
circulated through the fixed beds using a pump with maximal volume flow rate 4000 (l/h). The power-law
characteristics
s ¼ K � _cn; ð5Þ
where s is the shear stress, K is consistency coefficient, n is flow behaviour index, of the liquid systems studied
are presented in Table 2. The process temperature of 293 K in all measurements was regulated by a heat ex-
changer and controlled at the end of the test section. The rotameters have been scaled for each of non-New-
tonian liquids. Because the flow through a rotameter can involve the significant extension component and
hence the polymer solutions can suffer flow induced degradation, the rheological properties of the non-New-
tonian liquids used were controlled before and past rotameter calibration as well as before and past fluidisa-
tion. In polymer aqueous solutions used the mechanical degradation has not been observed. The direct
measured quantities were: the pressure drop DP, volume liquid rate V, dynamic height of a bed H and process
temperature T. The ranges of the change of the characteristic process and geometrical quantities tested are



Table 3
The ranges of the change of characteristic process and geometrical quantities tested

Quantity Dimension Newtonian liquids Power-law fluids

Equivalent linear dimension for liquid m de;n 2 ð0:00004676; 0:00005272Þ de;n 2 ð0:00005289; 0:001081Þ
Equivalent velocity of a liquid m/s xe;n 2 ð0:02142; 0:02184Þ xe;n 2 ð0:02278; 0:1030Þ
Superficial liquid velocity m/s w0 2 ð0:004369; 0:2295Þ w0 2 ð0:00318; 0:227Þ
Reduced velocity of a liquid – w0;r 2 ð0:2001; 10:51Þ w0;r 2 ð0:049; 9:993Þ
Reduced particle diameter – dp;r 2 ð34:15; 94:08Þ dp;r 2 ð1:666; 83:20Þ
Pressure drop Pa DP 2 ð15; 2300Þ DP 2 ð25; 2080Þ
Unitary pressure drop Pa/m DP

H 2 ð180; 7300Þ DP
H 2 ð250; 7353Þ

Euler number – Eu 2 ð17:74; 10644Þ Eu 2 ð16:98; 75860Þ
Reynolds number – Re0;n 2 ð10; 8960Þ Re0;n 2 ð0:4530; 5230Þ

Table 2
Characteristics of power-law solutions studied

Liquid Concentration
(ppm)

Parameters of the
power-law s ¼ K � _cn

Density qL

(kg/m3)
Equivalent liner
dimension
de;n105 (m)

Equivalent liquid
velocity
xe;n 102 (m/s)K; g (Pa sn) n

Water –
Aqueous solutions of

TWEEN 60
400 0.001 1 998.2 4.676 2.142
800

1200 0.001064 0.99 1000 4.679
Aqueous solutions of

PAA of molar
weight of Mp � 103

(PAA)

100 0.001 1 998.2 4.676
200
500 0.00106 1000 4.853 2.183

3000 0.0012 1001 5.272 2.274
Aqueous solutions of

PAA of molar
weight of
Mp � 2.106 with
special additives
(Rokrysol WF1)

30 0.00106 1 998.2 4.862 2.184
100 0.00136 0.98 1000 5.289 2.278
200 0.00183 0.96 5.955 2.417
500 0.00385 0.9 1002 7.746 2.757

1500 0.013 0.82 1001 13.17 3.594

Aqueous solutions of
Na–CMC

3000 0.053 0.75 1002 27.48 5.192
6000 0.221 0.67 1002 58.49 7.575
9000 0.55 0.65 1003 108.07 10.30

PAA – polyacrylamide, NA-CMC – carboxymethylcellulose sodium salt, TWEEN 60 – polyoxyethylene (20) sorbitan monostearate.
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presented in Table 3. The exemplary experimental data are presented in Fig. 2. The relationships of
DP ¼ f ðw0;HÞ and DP=H ¼ f ðw0Þ obtained were similar for all solid–liquid systems tested. It has been shown
that the critical velocity of fluidisation w0;crit is independent of the height H (Chhabra et al., 2001). The
Fig. 2. The experimental results on pressure drop for the Rokrysol WF1 aqueous solution of concentration of 1500 ppm for the bed of
average diameter dp ¼ 4:4 � 10�3 m.
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determination of the values of minimal fluidisation velocity on the basis of an analysis of pressure drop related
to the current two-phase system height gives the more accurate values than this one on the basis of the initial
bed height. For all experimental data the friction factor values k were calculated on the basis of relationships
as follows:
k ¼ 2 � DP
w2

0 � qL

� dp

H
� e3

1� e
; ð6Þ
where e is the current bed porosity when the initial one is equal to e0 (static bed voidage), defined as
e ¼ 1� H
H 0

� ð1� e0Þ: ð7Þ
For power-law fluids studied the characteristic modified Reynolds number definition used was taken as pro-
posed by Kemblowski et al. (1989):
Re0;n ¼
w2�n

0 � dn
p � qL

K � ð1� eÞn �
4n

1þ 3n

� �n

� 15 �
ffiffiffi
2
p

e2

 !1�n

; ð8Þ
which for the Newtonian liquid (K = gL, n = 1) is reduced to the classical one
Re0;N ¼
w0 � dp � qL

gL � ð1� eÞ : ð9Þ
The relationship of the k ¼ f ðRe0;nÞ obtained for all the complex liquid–solid particles systems studied as
well as for the liquid flow through packed and fluidised bed, is presented in Fig. 3. The solid line represents
the generalized Ergun’s as well as Blake–Kozeny formulas proposed for the Newtonian liquid flow through
packed and fluidised bed. It has been found that the values of drag coefficient in both, the laminar and tran-
sitional ðRe0;n < 165Þ, ranges of the flow for all fluids studied are determined by the generalised Ergun
equation
Fig. 3. Friction factor versus modified Reynolds number (8).
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DP
H
¼ 300

Re0;n
þ 3:5

� �
� w

2
0 � qL

2
� 1� e
e3 � up

� 1

dp

; ð10Þ
where up is the particle shape factor (in the study presented up = 1), and
k ¼ 300

Re0;n
þ 3:5: ð11Þ
The expression (11) confirms the previous suggestions for the non-Newtonian purely viscous fluid flow
through packed bed of Chhabra and Srinivas (1991) and Srinivas and Chhabra (1992) who proposed an adap-
tation of Ergun equation for spherical and non-spherical particles. It was found that the Eq. (11) gives the
satisfactory correlation of their data with weak inertial effects. The experimental data presented show the pos-
sibility to extend the relation mentioned above to fluidised bed too. For the values of Re0;n > 165 the friction
factor values
k ¼ 29:5 � Re�0:34
0;n ; ð12Þ
are lower than resulting from the both, Ergun and Burke–Plummer, relationships:
k
kErgun

¼ 1:8247� 0:1589 � ln Re0;n: ð13Þ
The comparison of the friction factor values (12) with the literature data was not possible. We did not find the
experimental data for power-law fluids flow through packed and fluidised bed related to the range of Reynolds
number greater than 165.

Comiti et al. (2000) extended their previous work (Sabiri and Comiti, 1997) for Newtonian fluids flow
through porous media to inelastic non-Newtonian fluids. Taking into account that the bed can be considered
as a bundle of identical tortuous pores of diameter dpore and length Lpore and H is the height of two-phase
system, the tortuosity of the porous medium is defined as
spore ¼
Lpore

H
: ð14Þ
The diameter of the pores is calculated by setting that their developed surface area is identical to the fixed bed
surface actually reached by the fluid flow:
dpore ¼
4e

avd � ð1� eÞ ; ð15Þ
where avd is the dynamic specific surface area of the porous medium for spherical particles determined from
relationship:
avd ¼
6

dp

: ð16Þ
The average pore velocity is related to the superficial velocity as
wpore ¼
w0

e
� spore; ð17Þ
where tortuosity for tightly packed spheres is approximated (Comiti and Renaud, 1989) by
spore ¼ 1� 0:41 � ln e: ð18Þ
The general equation of a model proposed by Sabiri and Comiti (1997) can be written using the following
dimensionless form (Chhabra et al., 2001):
fpore ¼
16a

Repore

þ 0:194b; ð19Þ
where the Reynolds number of pore based on conduit flow
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Repore ¼
ðw0 � sporeÞ2�n � qL � e2ð1�nÞ

2n�3 � K � ð1þ3n
4n Þ

n � ð1� eÞn � an
vd

ð20Þ
and friction factor is defined as
fpore ¼
DP
H
� 2e3

w2
0 � qL � s3

pore � ð1� eÞ � avd

: ð21Þ
Taking into account relationship (16) for spherical particles the formulas (20) and (21) take the forms as
follows:
Repore ¼
w2�n

0 � dn
p � qL

K � 1þ3n
4n

� �n �
e2ð1�nÞ

ð1� eÞn �
s2�n

pore

22n�3 � 3n ð22Þ
and
fpore ¼
DP
H
� dp

6
� 2

w2
0 � qL

� e3

s3
pore � ð1� eÞ ; ð23Þ
a and b in relationship (19) are two coefficients for wall effects defined by
a ¼ 1þ 4

avd � T � ð1� eÞ

� �1þn

¼ 1þ 2dp

3 � T � ð1� eÞ

� �1þn

; ð24Þ

b ¼ 1� dp

T

� �2

þ 0:427 � 1� 1� dp

T

� �2
" #

: ð25Þ
It has been shown (Chhabra et al., 2001) that for flow behaviour index values changed from 0.27 to 0.91,
the porosity in the range 0.31 6 e 6 0.46 and the ratio of dp=T < 0:15 (in the study presented dp/T changed
from 0.02 to 0.0489) the general Eq. (19) reduces to
fpore ¼
16

Repore

þ 0:194: ð26Þ
Comparison of the formulas of Reynolds number (8) and (22) as well as the definitions of friction factor k
(6) and fpore (23) gives the relationships
Repore ¼
s2�n

pore

3 � 23n�5
2 � 51�n

� Re0;n; ð27Þ

fpore ¼
k

6 � s3
pore

: ð28Þ
Substituting (27) and (28) into expression (26) permits to obtain the equation as follows:
k ¼
254:6 �

ffiffiffi
2
p� �3n

5n � Re0;n
� s1þn

pore þ 1:164 � s3
pore: ð29Þ
The procedure based on the capillary model (Sabiri and Comiti, 1997) needs the knowledge of tortuosity.
The review of existing in the literature proposals regarding the value and the meaning of the tortuosity factor
spore was given in paper of Chhabra et al. (2001). It results from there that various authors suggested various
correlations of spore ¼ f ðeÞ and the divergences between values of spore (Fig. 4) can be great. For example for
e = 0.44 by Mauret and Renaud (1997) the value of spore is equal to 1.402 whereas from a paper of Foscolo
et al. (1983) spore ¼ 2:273, respectively. Taking into account the relation (18) and a fact that in the experiments
presented the porosity changed from 0.415 (for packed bed) to 0.44 (for fluidised bed), it can be reasonable for
the needs of comparative analysis spore to be changed from 1.337 to 1.361. For spore ¼ 1:337 the formula (29)
takes the form



Fig. 4. Comparison of the literature results on tortuosity of fixed and fluidised bed: 1 – Carman (1956); 2 – Christopher and Middleman
(1965); 3 – Sheffield and Metzner (1976); 4 – Foscolo et al. (1983); 5 – Comiti and Renaud (1989); 6 – Puncochar and Drahos (1993) and 7
– Mauret and Renaud (1997).

Fig. 5.
capilla
Eq. (3
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k ¼ 340:4 � 0; 756n

Re0;n
þ 2:782 ð30Þ
and for spore ¼ 1:361
k ¼ 346:5 � 0; 770n

Re0;n
þ 2:934; ð31Þ
respectively. The exemplary comparison of the values of friction factor k resulted from the expressions (11),
(30) and (31) for flow behaviour index values of n = 1 and n = 0.65 is presented in Fig. 5. It was found that the
values resulting from the capillary model of Sabiri and Comiti (1997) and from an adaptation of Ergun equa-
tion (Chhabra and Srinivas, 1991; Srinivas and Chhabra, 1992) are comparable. Taking into account that the
last proposal includes the quantities directly measured, in our opinion, it is more usable in design practice.

The experimental data on minimum fluidisation velocity are presented in Fig. 6. It has been shown that the
minimum fluidisation velocity depends on particle diameter as well as the rheological characteristics of the
liquid phase. The introduction of the reduced particle diameter dp;r, defined as
dp;r ¼
dp

de;n

; ð32Þ
Comparison of the authors’ experimental data on friction factor values versus modified Reynolds number with resulting from
ry model: 1 – present data, Eq. (11); 2 – capillary model, Eq. (30), n = 1; 3 – capillary model, Eq. (30), n = 0.65; 4 – capillary model,
1), n = 1; 5 – capillary model, Eq. (31), n = 0.65.



Fig. 6. Effect of particle diameter, flow behaviour index and consistency coefficient on the minimum fluidisation velocity w0;crit for various
power-law liquids studied.
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where modified equivalent linear dimension de,n is described by the relation
de;n ¼
K2

g2�n � q2
L

� � 1
2þn

ð33Þ
permitted to analyse the experimental data (Fig. 7) on the basis of the dimensionless relationships. For that
purpose the reduced critical value of fluidisation velocity
w0;crit;r ¼
w0;crit

xe;n

; ð34Þ
Fig. 7. The relations of w0;crit;r ¼ f ðdp;rÞ and Re0;n;crit ¼ f ðdp;rÞ.
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where the equivalent fluid velocity for power-law liquids is defined as
xe;n ¼
gn � K
qL

� � 1
2þn

ð35Þ
and Reynolds number
Re0;n;crit ¼
w2�n

0;crit � d
n
p � qL

K � ð1� ecritÞn
� 4n

1þ 3n

� �n

� 15 �
ffiffiffi
2
p

e2
crit

 !1�n

; ð36Þ
as the function of the reduced particle diameter (32), have been determined. The equivalent quantities (32) and
(35) for Newtonian fluids reduce to well-known ones, proposed by Hobler (1966) and Ramm (1976):
de;n ¼

ffiffiffiffiffiffiffiffiffiffiffi
g2

L

g � q2
L

3

s
ð37Þ
and
xe;n ¼
ffiffiffiffiffiffiffiffiffiffiffi
g � gL

qL

3

r
: ð38Þ
The following correlation equations have been obtained:

• for dp;r 2 ð3:08; 11:5Þ

w0;crit ¼ 0:000746 � d2:35

p;r � 21:7%; ð39Þ
• for dp;r 2 ð11:5; 94:1Þ

w0;crit ¼ 0:0171 � d1:07

p;r � 15:5%: ð40Þ
In the next stage of analysis the results of present study have been compared with those of representative
studies in the literature. Several authors compared their experimental data related to minimum fluidisation
velocity with these ones for velocity of sedimentation observed. Taking it into account, first, the possibility
of the use of the diagram proposed by Koziol et al. (1978) has been checked. Koziol et al. (1978) extended
the work of Koziol (1974) in which the generalized dimensionless equation
ks � w2
s;r ¼

4

3
� Cq � dp;r; ð41Þ
for terminal settling of single spherical particles in Newtonian fluids by means of reduced velocity
ws;r ¼
ws

xe;n

ð42Þ
and reduced particle diameter
dp;r ¼
dp

de;n

ð43Þ
has been proposed. The Reynolds number was the product of the parameters:
Res ¼
ws � dp � qF

gF

¼ ws;r � dp;r; ð44Þ
where index F refers to any Newtonian fluid. On the basis of published experimental data the general modified
plot ws;r � C�1=3

q ¼ f ðdp;r � C1=3
q Þ has been worked out (Koziol, 1974). This one was the generalization of the dia-

grams proposed by Schiller and Naumann (1933). In the paper of Koziol et al. (1978) as the base of proposal
of generalized plot and equation for motion of spherical particles in Newtonian fluids there were taken the
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observations of Richardson and Zaki (1954) related to the ratio of sedimentation velocity we to the settling
velocity of single particle in a fluid ws which can be written as
Fig. 8.
propos
we

ws

¼ eZ ; ð45Þ
where exponent Z was found to be a function of Reynolds number and the ratio of particle diameter to col-
umn diameter dp/T, and the analysis of the literature data on sedimentation of Rowe and Henwood (1961) and
Wallis (1969). Rowe and Henwood (1961) proposed the following relationship between friction factor of
spherical particles sedimentation ke and friction factor of single particle settling ks:
ke ¼
ks

eA
ð46Þ
and Wallis (1969) observed that
ke � Re2
e ¼ ks � Re2

s ; ð47Þ
where the Reynolds number for sedimentation is defined as
Ree ¼
we � dp � qF

gF

¼ we;r � dp;r: ð48Þ
Substituting the Reynolds numbers formulas (44) and (48) into (47) the equation:
ke � w2
e;r ¼ ks � w2

s;r ð49Þ
has been obtained (Koziol et al., 1978). On the basis of published data in paper of Koziol et al. (1978) the
generalized relationship
k � w2
r;e ¼

4

3
� Cq � dp;r � e4:65 ð50Þ
for spherical particles motion in any Newtonian fluid and dimensionless plot (Fig. 8) for prediction of process
parameters, have been proposed. Koziol et al. (1978) suggested several lines to characterize the following pro-
cesses: settling of the single particle in a fluid (e = 1), sedimentation (0.4 < e < 1) and fluidisation
(e ¼ ecrit ¼ 0:4Þ. In Fig. 8 the comparison of the present experimental data for fluidisation with the proposition
of Koziol et al. (1978) has been presented. The characteristic values located in the diagram were taken as the
reduced ones (32) and (34) for all power-law liquids (including Newtonian ones) used. From the pattern shown
in Fig. 8 it results that the data from the present study are greater than resulting from the proposition of
Koziol et al. (1978) for minimum fluidisation velocity. The effect is considered as a logical one. In studies pre-
sented the critical value of bed voidage was greater than 0.4 for all two-phase systems tested. The averaged
The comparison of authors’ results with the generalized diagram of the velocity of solid particle motion in Newtonian fluids
ed by Koziol et al. (1978).
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value was ecrit ¼ 0:442: Therefore, it has been shown that the diagram proposed by Koziol et al. (1978) can be
stated as the generalized one, not only for the determination of the solid particles motion in Newtonian fluids,
but for the shear-thinning liquids too. In the last case it should be taken into account that the critical value of
porosity cannot be taken equal to 0.4, but should be appropriate to the real porosity in the critical conditions
for a given system solid particle–liquid.

Next, taking into account that the solid–gas fluidisation ranges map proposed by Bi and Grace (1995)
includes two characteristic lines included in diagram of Koziol et al. (1978), the ‘‘place’’ of the authors’ data
in this diagram, has been analyzed too. From the pattern shown in Fig. 9 the results are as follows:

(1) The Bi and Grace (1995) proposal is useful not only for determination the characteristics in gas–solid
fluidisation, but in power-law liquid–solid fluidisation too.

(2) The studies presented included the ranges of uniform fluidisation at dp;r � C1=3
q < 41:35 and of the bub-

bling breached one at dp;r � C1=3
q > 41:35.

The following step of the analysis was to determine the generalized method of the classification of fluidised
particles in power-law fluids by generalized Archimedes number
Fig. 9.
et al. (
fluidisa
Ar ¼ d3
p;r � Cq ¼ d3

p;r �
qs � qL

qL

ð51Þ
similar to the proposed by Goossens (1998) for arbitrary Newtonian fluid–solid combination. The fundamen-
tal pattern of the Goosens proposal is presented in Fig. 10. In the C range limited from above by the Archi-
medes number value Ar1 ¼ 0:97 in total range of fluidisation there are predominant the phenomena connected
with laminar flow (even when the local wires exist). For the solid particles which belong to class A the turbu-
lence effect on the process kinetics is negligible one. The observation cannot be given for solid particles satis-
fying the conditions of the B range. The limit of the ranges A and B is described by the critical value of
Analysis of the possibility of generalization of the map of the fluidisation ranges (Bi and Grace, 1995) for ecrit ¼ 0; 442: 1 – Koziol
1978), fluidisation line for e = 0.4; 2 – own results, ecrit; 3 – Koziol et al. (1978), single particle settling; 4 – beginning of the bubble
tion (Bi and Grace, 1995), 5 – beginning of the turbulent fluidisation (Bi and Grace, 1995), 6 – beginning of hydraulic transport.



Fig. 10. General classification diagram for particles fluidised in Newtonian fluids (Goossens, 1998).
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Archimedes number Ar2 ¼ 88:5: When the solid particles belong to the class D (from below limited by the
value Ar3 ¼ 176; 900) in total range of fluidisation the turbulent transfer effects play the dominating role.
In the present study the experimental data are correlated by the following relationships:

• at Re0;n;crit 2 ð0:011; 1:13Þ
Fig. 11
limited
Arn ¼ 488 � Re0:71
0;n;crit; ð52Þ
• at Re0;n;crit 2 ð1:13; 51:7Þ
Arn ¼ 460 � Re1:20
0;n;crit; ð53Þ
. The relation of Arn versus Re0;n from authors’ experimental data for minimum fluidisation velocity compared with generalized
lines in classification diagram (Goossens, 1998).
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Arn ¼ 120:3 � Re1:54
0;n;crit: ð54Þ
The patterns shown in Fig. 11 demonstrate that the experimental data obtained by us for minimum fluid-
isation velocity (except for the Re0;n;crit 6 0:01135, which can result from the accuracy of measurements for low
values of pressure drop and fluidisation velocity) lie over the fluidised region proposed by Goossens (1998)
when the axes are defined for Archimedes and Reynolds numbers characteristic for power-law fluid–solid par-
ticles systems studied. The suggestion can be made that the classification diagram of Goossens (1998) can be
accepted as the general one for the arbitrary Stokes fluid–solid combination.
3. Conclusion

This study was concerned with the experimental comparison of the effect of liquid phase properties on min-
imum fluidisation velocities for shear thinning fluids and polymeric surface-active agent’s solutions. It was
shown that the determination of the values of minimal fluidisation velocity on the basis of an analysis of pres-
sure drop related to the current two-phase system height gives more accurate values than this one based on the
initial bed height. Independently of the Newtonian or shear-thinning properties of the liquid flowing through
motionless or fluidised bed, the relation of the friction factor on well-defined Reynolds number (related to real
rheological parameters of a liquid studied) is analogous. The common correlation relationships for all solid
particles–liquids systems studied have been obtained. It has been found that the values of drag coefficient
in both, the laminar and transitional (Re0,n < 165) ranges of the flow for all fluids studied are determined
by the generalised for power-law liquids Ergun equation. For the values of Reynolds number Re0,n > 165
the friction factor values are lower than resulting from both, Ergun (1952) and Burke and Plummer (1928)
relationships. It has been shown that the diagram proposed by Koziol et al. (1978) can be stated as the general-
ized one, not only for the determination of the solid particles motion in Newtonian fluids, but for the shear-
thinning liquids too. In the last case it should be taken into account that the critical value of porosity cannot
be taken equal to 0.4, but should be appropriate to the real porosity in the critical conditions for a given sys-
tem solid particle–liquid (this one in the study presented was equal to 0.442). Furthermore, this experimental
investigation permitted to generalize both, the map of Bi and Grace (1995) related to the characteristic fluid-
isation ranges and the diagram of the classification of particles fluidised proposed by Goossens (1998) for
gas-fluidisation on any systems of solid particles–power law fluids. Therefore it has been found that the math-
ematical description of the fluidisation process is independent of the viscous fluid nature in which it is realised
but depends on the correctly defined (taking into account the rheological properties) all of the characteristic
dimensionless numbers and reduced diameters of the solid particles and minimal values of the velocities, char-
acterizing the onset of the fluidisation.
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